Stratified Sampling in Metropolis Light Transport

Tom Jankauski

May 12, 2015

Abstract

Stratified sampling is a common method in Monte Carlo integration
techniques to reduce variance. Stratified sampling has been difficult to
implement in Metropolis Light Transport, as each sample is a muta-
tion of the previous sample. This mutation can cause the algorithm to
sample outside of the stratum, and cause the algorithm to no longer
be stratified. This paper presents a theoretical framework for adapt-
ing Metropolis Light Transport to be stratified. It then discusses a
practical example of stratifying over the surface of a light in a scene.
Finally, it discusses practical concerns of stratifying with Metropolis
Light Transport.

1 Introduction

Monte Carlo based rendering algorithms attempt to produce an image by
integrating a rendering equation. Monte Carlo methods make use of ran-
dom samples to perform the integration. The random sampling can lead to
variance in the samples and shows up as noise in the final image.

Reducing variance is one way to produce a more clear image with the
same amount of computation. Stratification is a common technique to re-
duce the variance of a random sample. Stratification divides the space of all
samples into many different disjoin sample spaces, called strata. The total
number of samples taken is then divided among the strata and each of the
stratum are sampled independently. This ensures a more equal representa-
tion of each stratum, and helps to reduce the variance of the sampling.

2 Theory

The Metropolis Light Transport (MLT) algorithm integrates the contribu-
tion that a light path makes to the final image over the space of all possible
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light paths in a scene. To generate the next sample, the current path is
mutated. With a certain probability, this mutated sample is accepted and
added to the image. The acceptance probability is calculated so the proba-
bility of sampling a value, x, is proportional to the importance of x, called
I(x).

Z < InitialPath()

for i « 1toN do
y <— mutate(x)
a <+ acceptanceProb(y|z)
if random() < a then

Ty
end
add sample x to the image

end

def acceptanceProb(y|z):

I(YT(y—=) 1)

‘ return min(I(x)T(x_}y),

end
Algorithm 1: A basic outline of MLT1]

Where I(x) is the importance function, and 7'(x — y) is the probability
of mutating from z to y.

New samples in MLT come from mutation of previous samples. The
rules that govern how samples are mutated must be carefully designed to
explore important paths. In practice, it can be difficult to develop a muta-
tion function that only produces samples within a given stratum.

Hoberock’s paper[2] on arbitrary importance functions showed that the
importance function can be designed to enforce a sampling density. This
can be used to ensure that we pull samples only from the current stratum.

3 General Stratification

Let © be the space of all possible inputs to the function. Let f : Q2 — R
be the function we are integrating. I : Q — R™ is an existing importance
function.

Q is divided in to the strata €2y ..., which are mutually disjoint. We
can then create an importance function for each stratum as follows,

oy I(x) ifxeq
Ij(z) = { 0 otherwise
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Such an importance function ensures that no samples are taken from outside
2;. Any sample that lies outside of 2; has an importance of 0, so the accep-
tance probability of that sample will also be 0. This enforces stratification,
and is typically easy to design. The only requirement is a function that can
tell if a given sample lies within a given stratum.
With this, we can run the stratified sampling algorithm as follows.
function StratifiedMetropolis(f, numSamples):
sample < empty sample
for i < 1tok do
w; < weight of stratum §2;
S; < w; X numSamples
Metropolis, (sample, f, s;)
end

return sample
end
Algorithm 2: Stratified Metropolis
Where Metropolis,(sample, f, s;) deposits s; samples to the cumulative
sample (named sample), according to importance function I;

4 Stratifcation Over Light Sources

Stratifying over the area of light sources is a common stratification for bidi-
rectional path tracing. It reduces variance for pixels that are influenced
differently by different areas of the light. This section details how we can
use stratified MLT to stratify over the lights, and addresses some of the
practical concerns of doing so.

4.1 Selecting Strata

For metropolis light transport €2 is the space of all possible light paths in
the scene. T € () is a path that starts at a light source, makes some number
of bounces in the scene, and ends at the camera. f(Z) is the contribution
that Z makes to the image. This is the power of light that starts at the
light source and travels along Z to the camera. I(Z) can be any reasonable
importance function. A typical function would be the luminance of f(Z).
To create the strata, subdivide the surface of each light in the scene. Each
subdivision of each light will become its own stratum. In this case, we divide
each rectangular light into several smaller rectangles, but any polygonal
division will work. Let €2; be all light paths that start at subdivision ¢ of
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the light. The importance function is then defined as

L(7) = I(z) if T begins at light ¢
10 otherwise

The endpoint of Z is determined when the path is first generated. Gener-
ally, this is found when a ray is cast and hits a light source or when a sample
is generated starting at a light source. This information can be tagged onto
T to avoid repeating calculation.

This algorithm then stratifies samples over the surface of the light sources
in the scene.

4.2 Sampling Efficiency

Although the samples are already stratified, the mutation function can also
be changed to increase sampling efficiency and reduce variance. Without
these modifications, time would be wasted generating samples that are com-
pletely rejected. At the same time, because the importance function ensures
stratification, we do not need to change all of the mutation functions.

For this implementation, the only part of the mutation function changed
was bidirectional mutation. Bidirectional mutation mutates path & by delet-
ing a subpath from T and tracing a new subpath from the scene. When this
mutation deletes the start of the path, we simply change it to select a new
starting point on the current light. Now bidirectional mutations will always
generate paths in the current stratum.

The other components of the mutation function were left as is. Some of
the mutation functions would always mutate to a path in the current stratum
if the original path was in the current stratum. This was the case with lens
perturbation, which never move the start of the path. Other mutations
tended to make small changes to the path, and simply didn’t move the path
off of the current light stratum that often.

With these small changes to the mutation function, the algorithm can
stratify over light sources with very few wasted samples.

5 Results

To measure performance, a high quality of the scene was taken as a baseline
image. Then shorter renders, taking one tenth the number of samples, were
rendered for both stratified and unstratified algorithms. The first measure
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is the average of the relative difference of the luminance of the pixels.

N (a —b)?

relativeDiff(a, b) = S

Where a is the accepted value, and b is the value of the test render. For
relative difference, a smaller value is better. If the images are identical, then
the relative difference will be 0.

The second measure percent of mutations that were accepted. Having a
low acceptance rate means the samples are heavily correlated. This produces
an image with high variance and appears in the image as noise. A higher
acceptance rate is better.

Fach of these scores were averaged over 10 renders of each algorithm.

Scene Algorithm Relative Difference | Acceptance Rate
Ring Stratified 0.010 34.61%
Unstratified 0.013 34.40%
Cornell Box Stratified 0.026 42.35%
Unstratified 0.025 42.10%
Susuan Stratified 0.070 33.88%
Unstratified 0.080 33.82%

The stratified sampling method showed improvement over standard metropo-
lis sampling. It showed better performance in producing a closer image to
the final image, and had the same or better acceptance rate. The image
quality can be best seen in the accuracy of the shadows and in diffuse sur-
faces.

Because of the changes to bidirectional mutations, there was no signif-
icant loss in acceptance rate. The experiments imply that the stratified
method actually has an improved acceptance rate. This may be because
bidirectional mutations make a smaller change to the current path. This
would mean the mutated path has a better chance of being of a similar im-
portance to the original path. This leads to the path having a higher chance
of being accepted.

Stratification over light sources showed the greatest improvements in
scenes with large light sources and multiple light sources. Stratification
allowed each part of the light to have an equal representation in the final
render and reduced noise in the image.

Here we have some examples of the test renders. In figure 1, the strat-
ified render reduces the noise over the diffuse surfaces in the scene. It also
improves the quality of the shadow.
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Figure 1: Stratified

Figure 2: Unstratified

6 Possible Extensions

6.1 Improving Sample Acceptance

Stratification over lights can lead to samples being completely rejected when
they otherwise would not have. Experimentally, this is unlikely and will not
change the performance in most scenes. One possible modification is to
only use the updated bidirectional mutation rule without the change to the
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importance function. This no longer stratifies the samples, but can still get
a better representation of the light source. This may get similar results to
stratification without the risk of rejecting additional samples.

6.2 Updating Weights of Strata

Initially the weight of each stratum is set by an estimation of how much
it contributes to the scene. The power that a section of light produces is
a good estimate. We can, however, iteratively update the weight of each
stratum based on its actual contribution to the image. This can be done
by dividing the sampling into rounds. On the first round, take a stratified
random sample with an initial estimate for the weights of the strata. With
those samples, measure the actual contribution of the strata to the image,
and change the weights to reflect the contribution.
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